Multi-Dimensional Single-Peaked Consistency and Its Approximations
نویسندگان
چکیده
Single-peakedness is one of the most commonly used domain restrictions in social choice. However, the extent to which agent preferences are single-peaked in practice, and the extent to which recent proposals for approximate single-peakedness can further help explain voter preferences, is unclear. In this article, we assess the ability of both single-dimensional and multi-dimensional approximations to explain preference profiles drawn from several real-world elections. We develop a simple branch-andbound algorithm that finds multi-dimensional, singlepeaked axes that best fit a given profile, and which works with several forms of approximation. Empirical results on two election data sets show that preferences in these elections are far from single-peaked in any onedimensional space, but are nearly single-peaked in two dimensions. Our algorithms are reasonably efficient in practice, and also show excellent anytime performance.
منابع مشابه
The modified degenerate kernel method for the multi-dimensional Fredholm integral equations of the second kind
In this paper, to investigate the multi-dimensional Fredholm integral equations of the second kind a modified degenerate kernel method is used. To construct the mentioned modified, the source function is approximated by the same method which employed to obtain a degenerate approximation of the kernel. The Lagrange interpolation method is used to make the needed approximations. The error and ...
متن کاملINTUITIONISTIC FUZZY DIMENSIONAL ANALYSIS FOR MULTI-CRITERIA DECISION MAKING
Dimensional analysis, for multi-criteria decision making, is a mathematical method that includes diverse heterogeneous criteria into a single dimensionless index. Dimensional Analysis, in its current definition, presents the drawback to manipulate fuzzy information commonly presented in a multi-criteria decision making problem. To overcome such limitation, we propose two dimensional analysis ba...
متن کاملThe streamline diffusion method with implicit integration for the multi-dimensional Fermi Pencil Beam equation
We derive error estimates in the appropriate norms, for the streamlinediffusion (SD) finite element methods for steady state, energy dependent,Fermi equation in three space dimensions. These estimates yield optimal convergencerates due to the maximal available regularity of the exact solution.High order SD method together with implicit integration are used. The formulationis strongly consistent...
متن کاملSingle-Peaked Consistency for Weak Orders Is Easy
In economics and social choice single-peakedness is one of the most important and commonly studied models for preferences. It is well known that single-peaked consistency for total orders is in P. However in practice a preference profile is not always comprised of total orders. Often voters have indifference between some of the candidates. In a weak preference order indifference must be transit...
متن کاملAnalysis of High-order Approximations by Spectral Interpolation Applied to One- and Two-dimensional Finite Element Method
The implementation of high-order (spectral) approximations associated with FEM is an approach to overcome the difficulties encountered in the numerical analysis of complex problems. This paper proposes the use of the spectral finite element method, originally developed for computational fluid dynamics problems, to achieve improved solutions for these types of problems. Here, the interpolation n...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013